MITTEILUNGEN
des Chefs des
Kriegs-Karten- und Vermessungswesens

Februar 1943

Herausgegeben vom
Oberkommando des Heeres, Generalstab des Heeres
Chef des Kriegs-Karten- und Vermessungswesens
Berlin

Von den Angehörigen der Truppen und Dienstellen des Chefs des Kriegs-Karten- und Vermessungswesens starben für Führer und Vaterland:

Obst. d. R. Lieberwirth, Führer einer Div.-Kartenstelle, gefallen am 4. 1. 45 in Rußland.

Hauptmann (leg.) Hermann, Ins/Meß bei einem Panzerkorps, gefallen am 17. 1. 43 beim Kampf um Stalingrad.

Zahlenmäßige Aufstellung von Transformationsformeln zwischen zwei konformen ebenen Koordinatensystemen

Von Prof. Fischer, Stuttgart

In Anbetracht der Wichtigkeit vorstehender Aufgabe soll im nachstehenden die Formelableitung mit einem Zahlenbeispiel angegeben werden. Wie schon bemerkt, setzt die zahlenmäßige Aufstellung solcher Formeln voraus, daß die Koordinaten einer Anzahl trigonometrischer Punkte in beiden Systemen bekannt sind. Wir bezeichnen die Koordinaten des alten umzuformenden Systems mit (x', y'), die des neuen Systems mit (x, y) und die Koordinaten (x'o, y'o) des alten Koordinatenursprungs im neuen System mit (xo, yo), oder in komplexer Form:

\[z = (x' + iy') \]

Für die konforme Übertragung hat man nun:

\[z = f(z_0') \]

und hieraus nach dem Mac Laurin'schen Satz:

\[f(z_0') = f(z_0) + f'(o) + \frac{f''(o)}{2!} + \frac{f'''(o)}{3!} + \cdots \]

Hier ist:

\[f(z_0') = z_0 = xo + yo \]

Setzt man die Ausdrücke von (4) in die Gleichung (3) ein, so erhält man:

\[x = x_0 + x' + \frac{i y'}{2} - \frac{x'^2}{2} + \frac{i y'^2}{2} + \frac{x'^3}{3} + \frac{i y'^3}{3} + \cdots \]

Trennt man Reelles und Imaginäres, so ergibt sich:

\[x = x_0 + x' + y' \cdot \left(\frac{x'^2}{2} + \frac{i y'^2}{2} + \frac{x'^3}{3} + \frac{i y'^3}{3} + \cdots \right) \]

\[y = -y' \cdot \left(\frac{x'^2}{2} + \frac{i y'^2}{2} + \frac{x'^3}{3} + \frac{i y'^3}{3} + \cdots \right) \]
Aus den Gleichungen (6) und (7) sind die Koordinaten \((x_0, y_0)\) des alten Koordinatenursprungs im neuen System \((x, y)\) sowie die Differentialquotienten \(a_1, a_2, \ldots, a_n\) als Unbekannte aus den doppelt koordinierten Punkten zu berechnen. Da im allgemeinen die Differentialquotienten \(a_1, a_2, \ldots, a_n\) ausreichen, hat man insgesamt 8 Unbekannte. Zu ihrer Bestimmung erhält man, wenn mehr als 4 Punkte bekannt sind, eine Ausgleichsrechnung, für die aus 2 Punkten \(P_1\) und \(P_2\) Näherungswerte \((x_0), (y_0), (a_1)\) und \((\beta_1)\) zu berechnen sind. Hierzu hat man:

\[
\begin{align*}
 f_{1a} &= y_2 - y_1, \\
 f_{1b} &= x_2 - x_1, \\
 m &= \frac{f_{1a}}{f_{1b}}, \\
 a_1 &= m \cdot \sin(\gamma), \\
 \beta_1 &= m \cdot \cos(\gamma).
\end{align*}
\]

Bei Verwendung einer Rechenmaschine hat man unmittelbar:

\[
\begin{align*}
 (a_1) &= \frac{(x_2'-x_1')(y_2-y_1')-(y_2'-y_1)(x_2'-x_1)}{(y_2'-y_1)^2+(x_2'-x_1)^2}, \\
 (\beta_1) &= \frac{(x_2'-x_1')(y_2-y_1)-(y_2'-y_1)(x_2'-x_1)}{(y_2'-y_1)^2+(x_2'-x_1)^2}.
\end{align*}
\]

Zahlenbeispiel:

Für die Einzeichnung des deutschen Gitternetzes in die französischen Karten ist die Umrechnung der Koordinaten des Systems Nord de guerre in den 2. Gitterstreifen erforderlich. Die Transformationsformeln hierfür sind aus den Koordinaten von 12 Punkten, die in beiden Systemen gegeben sind, zu ermitteln. Die französischen Koordinaten „Nord de guerre“ sind konforme Lambert’sche Kegelkoordinaten auf dem Ellipsoid „Plessis“, d. h. auf dem durch die Längenreduktion \((1-0.724/10000)\) abgeänderten Ellipsoid Delambre, bei dem der Meridianquadrant genau 10000 km wird. Der Kegelmantel berührt die Ellipsoidoberfläche längs des Parallelkreises 55° nördlicher Breite, der Mittelpunkt der Projektion liegt auf dem Meridian 6° östwärts Paris. Zur Reduktion der maximalen Längenverzerrungen auf die Hälfte wird die Maßstabsreduktion \(m_0=0.99950908\) angebracht. Die \(x\)-Achse (Abscissenachse) erstreckt sich nach Osten, die \(y\)-Achse (Ordinatenachse) nach Norden. Um Vorzeichenwechsel bei den Koordinaten zu vermeiden, werden sämtliche \(y\) um 300 000 m, sämtliche \(x\) um 500 000 m vergrößert. Bei den Gleichungen (6) und (7) sind somit \(x\) und \(y\) gegenseitig zu vertauschen. Da die französischen Koordinaten aus keiner einheitlichen Triangulierung entstanden sind, muß nach der Ausgleichung noch mit größeren Restfehlern gerechnet werden.

Aus den gegebenen 12 Punkten, deren Lage aus der Skizze zu ersehen ist, ergeben sich 2 Gruppen von je 12 Fehlergleichungen. Für die Ausrechnung wurden folgende weitere Bezeichnungen eingeführt:

\[
\begin{align*}
 Y &= \text{französischer Hochwert}, \\
 X &= \text{französischer Rechtswert}, \\
 y' &= Y - 300000 \text{ m} \quad \text{(franz.)}, \\
 x' &= X - 500000 \text{ m} \quad \text{(franz.)}.
\end{align*}
\]
Entsprechend den Gleichungen (7) und (6) erhalten wir zur Umformung von franz. „Nord de guerre“ in den 2. Gitterstreifen:

(11) \[R = R_0 + \beta_1 \cdot y' + \alpha_1 \cdot x' + \beta_2 [1] + \alpha_2 [2] + \frac{1}{2} \beta_3 [3] + \frac{1}{n} \alpha_3 [4] + \ldots \]

(12) \[H = H_0 + \alpha_1 \cdot y' - \beta_1 \cdot x' + \alpha_2 [1] - \beta_2 [2] + \frac{1}{2} \alpha_3 [3] - \frac{1}{n} \beta_3 [4] + \ldots \]

Hier sind:

\[[1] = \frac{y'^2 - x'^2}{2} \]

\[[2] = y' \cdot x' \]

\[[3] = y' \cdot (y'^2 - x'^2) \]

Als Längeneinheit nehmen wir bei den y' und x' 100 km = 10⁶ m. Aus früheren Berechnungen sind folgende Nähерungswerte bekannt:

\[(H_0) = 26,25,761,29 \text{ m} \quad \quad (H_0) = 54,86,160,54 \text{ m} \]

\[(\alpha_1) = \frac{1}{1,000} \cdot 0,002,290 \]

\[(\beta_1) = \frac{1}{1,000} \cdot 0,002,290 \]

\[(\beta_2)^{10^{10}} = + 19,83,382 \]

\[(\beta_3) = 14,38,890 \cdot 10^{-10} \]

Die Nähерungswerte (\(\alpha_1\) und \(\beta_2\)) wären an sich nicht erforderlich gewesen.

Es ist also in den Gleichungen (11) und (12) zu setzen:

\[R = (R_0) + \Delta y = (H_0) + \Delta x + \alpha_1 \cdot x' + \beta_1 \cdot (y' + [1]) + \alpha_2 \cdot x' + \beta_2 \cdot ([2] + \frac{1}{2} \beta_3 [3] + \frac{1}{n} \alpha_3 [4]) \]

\[H = (H_0) + \Delta x + \alpha_1 \cdot x' + \beta_1 \cdot (y' - [1]) + \alpha_2 \cdot x' + \beta_2 \cdot ([3] - \frac{1}{2} \beta_3 [4] + \frac{1}{n} \alpha_3 [4]) \]

Hieraus erhält man die Fehlergleichungen:

\[\Delta y + \Delta x \cdot y' + \Delta x \cdot x' + \alpha_1 \cdot x' + \beta_1 \cdot (y' + [1]) + \alpha_2 \cdot x' + \beta_2 \cdot ([2] + \frac{1}{2} \beta_3 [3] + \frac{1}{n} \alpha_3 [4]) - \alpha_1 = \Delta y = 0, \quad \text{wobei} \]

\[- \Delta x = \frac{-R - (H_0) + \Delta y}{(H_0) + \Delta x + \alpha_1 \cdot x' + \beta_1 \cdot (y' + [1]) + \alpha_2 \cdot x' + \beta_2 \cdot ([2] + \frac{1}{2} \beta_3 [3] + \frac{1}{n} \alpha_3 [4])} \]

Man erhält 2 Gruppen Fehlergleichungen mit zusammen 8 Unbekannten. In jeder Fehlergleichungsguppe (13) oder (14) wird \([\alpha_1] = 0\) und \([\beta_2] = 0\) werden. Man wird also aus (13) und (14) die reduzierten Fehlergleichungen bilden.

\[\Delta y \cdot \frac{y' - [y]}{n} + \Delta x \cdot \left(x' - \frac{x}{n} \right) + \alpha_1 \cdot \left(x' - \frac{x}{n} \right) + \frac{1}{2} \beta_3 \cdot \left([3] - \frac{[1]}{n} \right) + \frac{1}{n} \alpha_3 \cdot \left([4] - \frac{[4]}{n} \right) - \left(x' - \frac{x}{n} \right) = 0 \]

\[\Delta x \cdot \frac{y' - [y]}{n} - \Delta y \cdot \left(x' - \frac{x}{n} \right) + \Delta x \cdot \left(y' - \frac{y}{n} \right) + \alpha_1 \cdot \left(y' - \frac{y}{n} \right) + \frac{1}{2} \beta_3 \cdot \left([3] - \frac{[1]}{n} \right) + \frac{1}{n} \alpha_3 \cdot \left([4] - \frac{[4]}{n} \right) - \left(x' - \frac{x}{n} \right) = 0 \]

Aus (13) und (14) rechnet man die Koeffizienten der Normalgleichungen.
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Δx</th>
<th>Δy</th>
<th>Δx^2</th>
<th>Δy^2</th>
<th>$\Delta x \Delta y$</th>
<th>S</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.74081</td>
<td>0.14361</td>
<td>0.01563</td>
<td>0.01606</td>
<td>0.00119</td>
<td>0.46070</td>
<td>0.03016</td>
</tr>
<tr>
<td>2</td>
<td>0.22000</td>
<td>0.02998</td>
<td>0.00601</td>
<td>0.00748</td>
<td>0.00037</td>
<td>0.03770</td>
<td>0.00651</td>
</tr>
<tr>
<td>3</td>
<td>0.28074</td>
<td>0.07037</td>
<td>0.00226</td>
<td>0.00252</td>
<td>0.00022</td>
<td>0.03224</td>
<td>0.00730</td>
</tr>
<tr>
<td>4</td>
<td>0.65746</td>
<td>0.25168</td>
<td>0.00469</td>
<td>0.01094</td>
<td>0.00026</td>
<td>0.04054</td>
<td>0.01330</td>
</tr>
<tr>
<td>5</td>
<td>0.00087</td>
<td>0.00028</td>
<td>0.00003</td>
<td>0.00004</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Δx</th>
<th>Δy</th>
<th>Δx^2</th>
<th>Δy^2</th>
<th>$\Delta x \Delta y$</th>
<th>S</th>
<th>V</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.74081</td>
<td>0.14361</td>
<td>0.01563</td>
<td>0.01606</td>
<td>0.00119</td>
<td>0.46070</td>
<td>0.03016</td>
</tr>
<tr>
<td>2</td>
<td>0.22000</td>
<td>0.02998</td>
<td>0.00601</td>
<td>0.00748</td>
<td>0.00037</td>
<td>0.03770</td>
<td>0.00651</td>
</tr>
<tr>
<td>3</td>
<td>0.28074</td>
<td>0.07037</td>
<td>0.00226</td>
<td>0.00252</td>
<td>0.00022</td>
<td>0.03224</td>
<td>0.00730</td>
</tr>
<tr>
<td>4</td>
<td>0.65746</td>
<td>0.25168</td>
<td>0.00469</td>
<td>0.01094</td>
<td>0.00026</td>
<td>0.04054</td>
<td>0.01330</td>
</tr>
<tr>
<td>5</td>
<td>0.00087</td>
<td>0.00028</td>
<td>0.00003</td>
<td>0.00004</td>
<td>0.00000</td>
<td>0.00000</td>
<td>0.00000</td>
</tr>
</tbody>
</table>
Umformungsgleichungen:

\[a \cdot x + b \cdot y + c \cdot z = d \]

\[\begin{align*}
 a &= 0.000210 \\
 b &= 0.000231 \\
 c &= 0.000263 \\
 d &= 0.000293 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000263 \\
 b &= 0.000293 \\
 c &= 0.000323 \\
 d &= 0.000353 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000323 \\
 b &= 0.000353 \\
 c &= 0.000383 \\
 d &= 0.000413 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000383 \\
 b &= 0.000413 \\
 c &= 0.000443 \\
 d &= 0.000473 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000443 \\
 b &= 0.000473 \\
 c &= 0.000503 \\
 d &= 0.000533 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000503 \\
 b &= 0.000533 \\
 c &= 0.000563 \\
 d &= 0.000593 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000563 \\
 b &= 0.000593 \\
 c &= 0.000623 \\
 d &= 0.000653 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000623 \\
 b &= 0.000653 \\
 c &= 0.000683 \\
 d &= 0.000713 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000683 \\
 b &= 0.000713 \\
 c &= 0.000743 \\
 d &= 0.000773 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000743 \\
 b &= 0.000773 \\
 c &= 0.000803 \\
 d &= 0.000833 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000803 \\
 b &= 0.000833 \\
 c &= 0.000863 \\
 d &= 0.000893 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000863 \\
 b &= 0.000893 \\
 c &= 0.000923 \\
 d &= 0.000953 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000923 \\
 b &= 0.000953 \\
 c &= 0.000983 \\
 d &= 0.001013 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.000983 \\
 b &= 0.001013 \\
 c &= 0.001043 \\
 d &= 0.001073 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001043 \\
 b &= 0.001073 \\
 c &= 0.001103 \\
 d &= 0.001133 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001103 \\
 b &= 0.001133 \\
 c &= 0.001163 \\
 d &= 0.001193 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001163 \\
 b &= 0.001193 \\
 c &= 0.001223 \\
 d &= 0.001253 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001223 \\
 b &= 0.001253 \\
 c &= 0.001283 \\
 d &= 0.001313 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001283 \\
 b &= 0.001313 \\
 c &= 0.001343 \\
 d &= 0.001373 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001343 \\
 b &= 0.001373 \\
 c &= 0.001403 \\
 d &= 0.001433 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001403 \\
 b &= 0.001433 \\
 c &= 0.001463 \\
 d &= 0.001493 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001463 \\
 b &= 0.001493 \\
 c &= 0.001523 \\
 d &= 0.001553 \\
\end{align*} \]

\[\begin{align*}
 a &= 0.001523 \\
 b &= 0.001553 \\
 c &= 0.001583 \\
 d &= 0.001613 \\
\end{align*} \]

Mittlerer Fehler der Gewichtseinheit:

\[m = \sqrt{2 \cdot 2.5 \cdot 0.01} = 0.04994 \]

\[\Delta m = 0.04994 \]

\[\Delta m = 0.04994 \]
Umkehrung von französisch Nord de guerre in den 2. Gitterstreifen (604/II)

Umkehrung der Reihen für die dänische Abbildung der ebenen Meridiankonvergenz

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

1. Einleitung

Seit 1934 werden die trigonometrischen Rechnungen in Dänemark in einem System („System 1934“) ausgeführt, welches durch die sogenannte Buchwald’sche Abbildung des Hayford’schen Ellipsoides erhalten wird. Diese in [1] (unangeführte) beschriebene Projektion ist winkeltreu und wird durch die Forderung nach einer bestimmten Form der Maßstabszerrung definiert. Sie läßt sich nicht geometrisch veranschau-

lichen und auch nicht durch geschlossene Formeln darstellen. Für die Abbildungsgleichungen werden Potenzreihen angegeben.

Die Form dieser Potenzreihen weicht jedoch von der sonst bei winkeltreuen Abbildungen sich ergebenden ab, da jede Reihe alle Potenzen der Unbekannten enthält („vollständigen Reihen“). Der Grund hierfür liegt im Fehlen der Symmetrie zum Bild des Meridians durch das Zentrum, welcher nicht als gerade Linie abgebildet wird und daher nicht als Achse des ebenen Koordinatensystems gewählt werden kann.

Die allgemeinen Formeln für diese Reihen wurden bisher nicht bekannt gegeben, wohl aber das geodätische Institut in Kopenhagen die Zahlenkoeffizienten der Reihen für die Berechnung geographischer Koordinaten aus ebenen mitgeteilt. Die umgekehrten Reihen, welche aus dem eingangs erwähnten Grund für die dänische Landesvermessung keine Bedeutung haben, lagen hingegen nicht vor.

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

Umkehrung der Reihen für die dänische Abbildung und Berechnung der ebenen Meridiankonvergenz

Untersuchungen der Reihen für die dänische Abbildung der Meridiankonvergenz und Berechnung der ebenen Meridiankonvergenz

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

1. Einleitung

Seit 1934 werden die trigonometrischen Rechnungen in Dänemark in einem System („System 1934“) ausgeführt, welches durch die sogenannte Buchwald’sche Abbildung des Hayford’schen Ellipsoides erhalten wird. Diese in [1] (ungeführte) beschriebene Projektion ist winkeltreu und wird durch die Forderung nach einer bestimmten Form der Maßstabszerrung definiert. Sie läßt sich nicht geometrisch veranschau-

lichen und auch nicht durch geschlossene Formeln darstellen. Für die Abbildungsgleichungen werden Potenzreihen angegeben.

Die Form dieser Potenzreihen weicht jedoch von der sonst bei winkeltreuen Abbildungen sich ergebenden ab, da jede Reihe alle Potenzen der Unbekannten enthält („vollständigen Reihen“). Der Grund hierfür liegt im Fehlen der Symmetrie zum Bild des Meridians durch das Zentrum, welcher nicht als gerade Linie abgebildet wird und daher nicht als Achse des ebenen Koordinatensystems gewählt werden kann.

Die allgemeinen Formeln für diese Reihen wurden bisher nicht bekannt gegeben, wohl aber das geodätische Institut in Kopenhagen die Zahlenkoeffizienten der Reihen für die Berechnung geographischer Koordinaten aus ebenen mitgeteilt. Die umgekehrten Reihen, welche aus dem eingangs erwähnten Grund für die dänische Landesvermessung keine Bedeutung haben, lagen hingegen nicht vor.

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

Umkehrung der Reihen für die dänische Abbildung und Berechnung der ebenen Meridiankonvergenz

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

1. Einleitung

Seit 1934 werden die trigonometrischen Rechnungen in Dänemark in einem System („System 1934“) ausgeführt, welches durch die sogenannte Buchwald’sche Abbildung des Hayford’schen Ellipsoides erhalten wird. Diese in [1] (ungeführte) beschriebene Projektion ist winkeltreu und wird durch die Forderung nach einer bestimmten Form der Maßstabszerrung definiert. Sie läßt sich nicht geometrisch veranschau-

lichen und auch nicht durch geschlossene Formeln darstellen. Für die Abbildungsgleichungen werden Potenzreihen angegeben.

Die Form dieser Potenzreihen weicht jedoch von der sonst bei winkeltreuen Abbildungen sich ergebenden ab, da jede Reihe alle Potenzen der Unbekannten enthält („vollständigen Reihen“). Der Grund hierfür liegt im Fehlen der Symmetrie zum Bild des Meridians durch das Zentrum, welcher nicht als gerade Linie abgebildet wird und daher nicht als Achse des ebenen Koordinatensystems gewählt werden kann.

Die allgemeinen Formeln für diese Reihen wurden bisher nicht bekannt gegeben, wohl aber das geodätische Institut in Kopenhagen die Zahlenkoeffizienten der Reihen für die Berechnung geographischer Koordinaten aus ebenen mitgeteilt. Die umgekehrten Reihen, welche aus dem eingangs erwähnten Grund für die dänische Landesvermessung keine Bedeutung haben, lagen hingegen nicht vor.

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

Umkehrung der Reihen für die dänische Abbildung und Berechnung der ebenen Meridiankonvergenz

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

1. Einleitung

Seit 1934 werden die trigonometrischen Rechnungen in Dänemark in einem System („System 1934“) ausgeführt, welches durch die sogenannte Buchwald’sche Abbildung des Hayford’schen Ellipsoides erhalten wird. Diese in [1] (ungeführte) beschriebene Projektion ist winkeltreu und wird durch die Forderung nach einer bestimmten Form der Maßstabszerrung definiert. Sie läßt sich nicht geometrisch veranschau-

lichen und auch nicht durch geschlossene Formeln darstellen. Für die Abbildungsgleichungen werden Potenzreihen angegeben.

Die Form dieser Potenzreihen weicht jedoch von der sonst bei winkeltreuen Abbildungen sich ergebenden ab, da jede Reihe alle Potenzen der Unbekannten enthält („vollständigen Reihen“). Der Grund hierfür liegt im Fehlen der Symmetrie zum Bild des Meridians durch das Zentrum, welcher nicht als gerade Linie abgebildet wird und daher nicht als Achse des ebenen Koordinatensystems gewählt werden kann.

Die allgemeinen Formeln für diese Reihen wurden bisher nicht bekannt gegeben, wohl aber das geodätische Institut in Kopenhagen die Zahlenkoeffizienten der Reihen für die Berechnung geographischer Koordinaten aus ebenen mitgeteilt. Die umgekehrten Reihen, welche aus dem eingangs erwähnten Grund für die dänische Landesvermessung keine Bedeutung haben, lagen hingegen nicht vor.

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

Umkehrung der Reihen für die dänische Abbildung und Berechnung der ebenen Meridiankonvergenz

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.

1. Einleitung

Seit 1934 werden die trigonometrischen Rechnungen in Dänemark in einem System („System 1934“) ausgeführt, welches durch die sogenannte Buchwald’sche Abbildung des Hayford’schen Ellipsoides erhalten wird. Diese in [1] (ungeführte) beschriebene Projektion ist winkeltreu und wird durch die Forderung nach einer bestimmten Form der Maßstabszerrung definiert. Sie läßt sich nicht geometrisch veranschau-

lichen und auch nicht durch geschlossene Formeln darstellen. Für die Abbildungsgleichungen werden Potenzreihen angegeben.

Die Form dieser Potenzreihen weicht jedoch von der sonst bei winkeltreuen Abbildungen sich ergebenden ab, da jede Reihe alle Potenzen der Unbekannten enthält („vollständigen Reihen“). Der Grund hierfür liegt im Fehlen der Symmetrie zum Bild des Meridians durch das Zentrum, welcher nicht als gerade Linie abgebildet wird und daher nicht als Achse des ebenen Koordinatensystems gewählt werden kann.

Die allgemeinen Formeln für diese Reihen wurden bisher nicht bekannt gegeben, wohl aber das geodätische Institut in Kopenhagen die Zahlenkoeffizienten der Reihen für die Berechnung geographischer Koordinaten aus ebenen mitgeteilt. Die umgekehrten Reihen, welche aus dem eingangs erwähnten Grund für die dänische Landesvermessung keine Bedeutung haben, lagen hingegen nicht vor.

Von Dr.-Ing. Karl Rinner, Reg.-Rat im OKM.
Mit \((2a)\) werden die zweiten Potenzen
\[x^2 = [10]^2 \Delta^2 + 2[10][01] \Delta \Delta + [01]^2 \Delta^2 \]
\[y^2 = [10]^2 \Delta^2 + 2[10][01] \Delta \Delta + [01]^2 \Delta^2 \]
\[xy = [10][10] \Delta \Delta + [10][01] \Delta \Delta + [01][01] \Delta \Delta \]
gebildet, welche in \((1)\) eingesetzt, Beziehungen für die Glieder 2. Ordnung ergeben. Man erhält die Gleichungen
\[\Delta F = F_0 + F_1 \Delta \Delta \]
\[\Delta \Delta = F_1 \Delta \Delta + F_0 \Delta \Delta \]
wobei für \(F\) und \(\bar{F}\) die Beziehungen gelten:
\[F = f_{00} \Delta^2 + f_{01} \Delta \Delta + f_{10} \Delta \Delta + f_{11} \Delta^2 \]
\[\bar{F} = f_{00} \Delta^2 + f_{01} \Delta \Delta + f_{10} \Delta \Delta + f_{11} \Delta^2 \]
Aus den Gleichungen \((4b)\) läßt sich nun das allgemeine Bildungsgesetz für die Koeffizienten \([ik]\) ablesen, welches als Satz ausgesprochen werden soll.

Satz: Jeder Koeffizient \([ik]\) bzw. \([ik]\) von der Ordnung \((i+k)\) wird als negative Summe der \((m^2-3n-4)\) Produkte \((k^m_m \Delta^m_m)\) bzw. \((k^m_m \Delta_m m)\) gebildet, für welche die Beziehung \(1 \leq (l+m) \leq (l+k)\) gilt. In jedem Produkt bedeuten:

1. \(D_{lm} \) bzw. \(\Delta_{lm}\) die nach \((4c)\) gebildeten Determinantenquotienten.
2. \(k^m_m\) die Summe aus allen möglichen Produkten der vorgegebenen Koeffizienten \([rs]\) und \([fn]\) für welche die Quersumme \((r+s+t+w) = (i+k)\). Dabei gibt \(l\) die Zahl der Faktoren \([rs]\) und die \([fn]\) an und erhält jedes dieser Produkte nach dem Produkt \(r \times s \times t \times w\) folgenden Zahlenfaktor.

Nach diesem Satz, welcher in voller Allgemeinheit bewiesen werden kann, kann man nun die allgemeinen Formeln für die übrigen Glieder der Reihe ohne weitere Rechnung angeben.

Für die Glieder 3. und 4. Ordnung gelten danach die Gleichungen \((5)\) und \((6)\). Die dazugehörigen \(h\) sind ebenso wie die bereits in \((4b)\) angegebenen \(h\) für die Glieder 2. Ordnung in Tafel 1 zusammengestellt.

\[D_{0m} = \Sigma k^m_m D_{lm} \quad \Sigma k^m_m D_{0m} \]
\[D_{1m} = \Sigma k^m_m D_{0m} \quad \Sigma k^m_m D_{1m} \]
\[D_{2m} = \Sigma k^m_m D_{0m} \quad \Sigma k^m_m D_{2m} \]
\[D_{3m} = \Sigma k^m_m D_{0m} \quad \Sigma k^m_m D_{3m} \]
\[D_{4m} = \Sigma k^m_m D_{0m} \quad \Sigma k^m_m D_{4m} \]
\[l, m = 20, 11, 02, 30, 21, 12, 03 \]

\[l = 20 \]
\[m = 20, 11, 02, 30, 21, 12, 03 \]

\[\Sigma k^m_m D_{lm} = \Sigma k^m_m D_{0m} \]
\[\Sigma k^m_m D_{lm} = \Sigma k^m_m D_{0m} \]
\[\Sigma k^m_m D_{lm} = \Sigma k^m_m D_{0m} \]
\[\Sigma k^m_m D_{lm} = \Sigma k^m_m D_{0m} \]

Damit ist die Umkehrung der Reihen bis einschließlich der Reihe 4. Ordnung durchgeführt. Das Ergebnis sind die Glieder \((7)\), in welchen die Koeffizienten nach den Formeln \((2)\), \((4)\), \((5)\), \((6)\) zu berechnen sind.
Symmetrische konforme Reihen übergehen, wenn alle $(i\,k)$ für welche k eine ungerade Zahl ist gleich Null gesetzt werden.

Als ebene Meridiankonvergenz

Durch Differentieren erhält man in diesem Falle

Koordinaten dargestellt werden. Die Gleichungen (7)

mit der Parallelene zur Hochachse in P einschließe. Sie kann also als Funktion von geographischen und ebenen Koordinaten dargestellt werden.

Im Folgenden werden die Gleichungen (8) benutzt, weil die hier gewonnenen Formeln auch für die Bezeichnungen

$x=\frac{1}{x}$ für welche

$\gamma = \sum (i\,k)$ gilt

Durch Multiplikation ergibt sich

$\gamma = \sum (i\,k)\,\Delta x\,\Delta y$.

Für die darin enthaltenen $[i\,k]$ gelten die Bestimmungsgleichungen

$\sum (i\,k)\,\Delta x\,\Delta y = 0$.

$\gamma = \sum (i\,k)\,\Delta x\,\Delta y$.

Für γ erhält man schließlich

$\gamma = \sum (i\,k)$.

$\gamma = \sum (i\,k)$.
Für die Berechnung der Reihen für (8b) können die entsprechenden Formeln wegen der zwischen den Koordinaten in Meter ergeben, wenn \(\beta \) und 611 in Einheiten von je 1000" ausgeführt werden.

\[
\begin{align*}
[09^2] &= [09], \quad [09, 100^2] = [10, 00], \\
[30^2] &= [30], \quad [30, 100^2] = [10, 30], \\
[21^2] &= [21], \quad [21, 100^2] = [10, 21], \\
[12^2] &= [12], \quad [12, 100^2] = [00, 12], \\
[03^2] &= [13], \quad [03, 100^2] = [01, 30].
\end{align*}
\]

(13)

Für die Berechnung der Reihen für (8b) können die entsprechenden Formeln wegen der zwischen den Koordinaten in Meter ergeben, wenn \(\beta \) und 611 in Einheiten von je 1000" ausgeführt werden. Es ist also

\[
\begin{align*}
(00^2) &= (00), \\
(10^2) &= (11), \\
(01^2) &= (20), \\
(20^2) &= (21), \\
(11^2) &= (60), \\
(02^2) &= (61), \\
(00^2) &= (03), \\
(10^2) &= (13), \\
(01^2) &= (10), \\
(02^2) &= (01).
\end{align*}
\]

(13)

Die Multiplikation \(\frac{1}{10} \) ergibt

\[
\begin{align*}
7 &= \Sigma (1) x'y^3, \\
7 &= \Sigma (1) x'y^3.
\end{align*}
\]

(12b)

worin für die Gleichungen 12 gelten, wenn darin die eckigen Klammer durch runde ersetzt werden. Weiter erhält man wie früher aus 12b

\[
\begin{align*}
7 &= \Sigma (1) x'y^3, \\
7 &= \Sigma (1) x'y^3.
\end{align*}
\]

(12b)

worin die (8) wie oben aus (13) durch Verzweigen der eckigen und runden Klammer erhalten werden. Abschließend sei noch festgestellt, daß die aus (9) folgende allgemeine Formel nyZules auf analoge Weise ohne Rechnung sofort angeschrieben werden können und daß sich analog wie im 2. Abschnitt angeben, die für symmetrische konforme Reihen bestehenden Gleichungen durch Nullsetzen der entsprechenden Koeffizienten ergeben.

4. Die zahlenmäßige Rechnung für Dänemark

Die vom Geod. Institut in Kopenhagen mitgeteilten Zahlenkoeffizienten (\(i k \)) für die Systeme Jütland und Seeland sind in Tafel 2 und 3 enthalten. Sie geben \(\Delta \varphi \) und \(\Delta \lambda \) in Sekunden, wenn die Koordinaten in Einheiten von 100 km in die Rechnung eingeführt werden, das heißt, jeder Koeffizient (\(ik \)) besitzt eine Dimension \(\rho 10^{ij} \cdot h^k \). Da in Dänemark \(y \) nach Norden und \(x \) nach Westen gezählt wird, müssen in den abgeleiteten allgemeinen Formeln \(x \) und \(y \) vertauscht werden. Die Koeffizienten \((ik) \) sollen nun in der Dimension \(\frac{\rho}{p} \) berechnet werden, so daß sich die eckigen Koordinaten in Meter ergeben, wenn \(\Delta \varphi \) und \(\Delta \lambda \) in Einheiten von je 1000" ausgeführt werden.

Da die Formeln (2) und (7) dimensionslose Koeffizienten \((ik) \) zur Voraussetzung haben bzw. dimensionslose \((ik) \) \((ik) \) ergeben, müssen die \((ik) \), welche aus den mit Dimensionen versehenen \((ik) \) noch mit bestimmten Faktoren multipliziert werden. Bezeichnen (\(b \)) bzw. (\(b \)) die dimensionslosen Zahlenkoeffizienten, \((lb) \) die vorgegebenen und \((ik) \) die hieraus unmittelbar folgenden, sowie \((ik) \) die gesuchten Koeffizienten, so bestehen die Beziehungen

\[
\begin{align*}
(ik) &= (lb) \cdot \rho \cdot 10^{ij} \cdot h^k, \\
(ik) &= (lb) \cdot \rho \cdot 10^{ij} \cdot h^k.
\end{align*}
\]

(14)

Damit erhält man zum Beispiel

\[
\begin{align*}
(10^2) &= (10)^2, \\
(20^2) &= (20)^2, \\
(00^2) &= (00)^2.
\end{align*}
\]

(15)

Die Zahlenermittlung wurde mit der elektrischen Rechenmaschine ausgeführt, und zwar wurden erst sämtliche \(\Delta \varphi \) und \(\Delta \lambda \) in Einheiten von 100 Sekunden und \(x \) und \(y \) in Einheiten von 100 km in die Rechnung eingeführt werden. Eine einfache Überlegung zeigt, daß die aus Tafel 2 und 3 folgenden Zahlenkoeffizienten die Dimension \(\frac{\rho}{p} \) und \(\frac{10^{ij} \cdot h^k}{\rho} \), so daß die erhaltenen Koeffizienten lediglich mit \(\varphi \) multipliziert werden müssen, um \(\gamma \) in Sekunden zu erhalten. Die Zahlenermittlung wurde in der Reihenfolge (11) (12) (13) durchgeführt.

Bemerkenswert ist, daß auch in einer Konvergenz von etwa 8 Minuten vorhanden ist, daß die Hochachse für Jütland und Seeland um etwa 8 Min. nach Ostern verdreht ist.

In dem beigefügten für die Kriegsmarine verwendeten Rechenvordruck ist entsprechend dem in (2) angegebenen Rechenschema die Umrechnung eines Punktes durchgeführt und die Meridianskonvergenz berechnet. Es ergibt sich die genügende Übereinstimmung von 1 bis 2 cm in den Koordinaten und 0,1" in der Meridiankonvergenz. Bei Verwendung der Doppelrechenmaschine werden \(x \), \(y \) und \(\Delta \lambda \) zweckmäßig gemeinsam bestimmt und am besten gleich ein Schaltschema für alle möglichen (4) Fälle an Stelle der Vorzeichen angegeben.

Literaturverzeichnis:

<table>
<thead>
<tr>
<th>$k = 20$</th>
<th>k^n</th>
<th>k^m</th>
<th>k^{an}</th>
<th>k^{am}</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>$[[10]^p, [10]^p]$</td>
<td>$[10][10]$</td>
<td>$[10][10]$</td>
<td>$[10][10]$</td>
</tr>
<tr>
<td>02</td>
<td>$[[10],[01]^p]$</td>
<td>$[01][01]$</td>
<td>$[01][01]$</td>
<td>$[01][01]$</td>
</tr>
<tr>
<td>$k = 30$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>$[[10][10]$</td>
<td>$[10][10]$</td>
<td>$[10][10]$</td>
<td>$[10][10]$</td>
</tr>
<tr>
<td>01</td>
<td>$[[10],[01][01]]^p$</td>
<td>$[01][01]$</td>
<td>$[01][01]$</td>
<td>$[01][01]$</td>
</tr>
<tr>
<td>$k = 40$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>$[[10][10]$</td>
<td>$[10][10]$</td>
<td>$[10][10]$</td>
<td>$[10][10]$</td>
</tr>
<tr>
<td>01</td>
<td>$[[10],[01][01]]^p$</td>
<td>$[01][01]$</td>
<td>$[01][01]$</td>
<td>$[01][01]$</td>
</tr>
</tbody>
</table>

Table 1
System Jütland

<table>
<thead>
<tr>
<th>α</th>
<th>δ</th>
<th>y</th>
<th>x</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°)</td>
<td>(°)</td>
<td>(')</td>
<td>(')</td>
<td>(')</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>+ 2283,496</td>
<td>- 13,482</td>
<td>+ 30926,122</td>
<td>+ 71,824</td>
</tr>
<tr>
<td>01</td>
<td>+ 7,509</td>
<td>+ 5805,089</td>
<td>- 40,004</td>
<td>+ 17221,172</td>
</tr>
<tr>
<td>20</td>
<td>- 0,254</td>
<td>+ 0,261</td>
<td>+ 0,6979</td>
<td>- 0,9484</td>
</tr>
<tr>
<td>11</td>
<td>+ 0,468</td>
<td>+ 135,817</td>
<td>+ 1,3483</td>
<td>+ 124,654</td>
</tr>
<tr>
<td>02</td>
<td>- 37,825</td>
<td>+ 0,261</td>
<td>+ 34,7104</td>
<td>+ 0,7352</td>
</tr>
<tr>
<td>30</td>
<td>+ 0,001</td>
<td>+ 0,004</td>
<td>+ 0,0099</td>
<td>+ 0,0019</td>
</tr>
<tr>
<td>21</td>
<td>0,001</td>
<td>+ 3,891</td>
<td>+ 742</td>
<td>+ 29,543</td>
</tr>
<tr>
<td>12</td>
<td>+ 1,277</td>
<td>+ 0,015</td>
<td>+ 18,825</td>
<td>+ 645</td>
</tr>
<tr>
<td>03</td>
<td>+ 0,004</td>
<td>+ 1,297</td>
<td>+ 133</td>
<td>+ 2568</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>+ 0,102</td>
<td>+ 0,000020</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>+ 0,020</td>
<td>+ 0,000220</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>+ 0,102</td>
<td>+ 0,000020</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

System Seeland

<table>
<thead>
<tr>
<th>α</th>
<th>δ</th>
<th>y</th>
<th>x</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>(°)</td>
<td>(°)</td>
<td>(')</td>
<td>(')</td>
<td>(')</td>
</tr>
<tr>
<td>00</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>+ 2283,496</td>
<td>- 13,482</td>
<td>+ 30926,122</td>
<td>+ 71,824</td>
</tr>
<tr>
<td>01</td>
<td>+ 7,509</td>
<td>+ 5805,089</td>
<td>- 40,004</td>
<td>+ 17221,172</td>
</tr>
<tr>
<td>20</td>
<td>- 0,254</td>
<td>+ 0,261</td>
<td>+ 0,6979</td>
<td>- 0,9484</td>
</tr>
<tr>
<td>11</td>
<td>+ 0,468</td>
<td>+ 135,817</td>
<td>+ 1,3483</td>
<td>+ 124,654</td>
</tr>
<tr>
<td>02</td>
<td>- 37,825</td>
<td>+ 0,261</td>
<td>+ 34,7104</td>
<td>+ 0,7352</td>
</tr>
<tr>
<td>30</td>
<td>+ 0,001</td>
<td>+ 0,004</td>
<td>+ 0,0099</td>
<td>+ 0,0019</td>
</tr>
<tr>
<td>21</td>
<td>0,001</td>
<td>+ 3,891</td>
<td>+ 742</td>
<td>+ 29,543</td>
</tr>
<tr>
<td>12</td>
<td>+ 1,277</td>
<td>+ 0,015</td>
<td>+ 18,825</td>
<td>+ 645</td>
</tr>
<tr>
<td>03</td>
<td>+ 0,004</td>
<td>+ 1,297</td>
<td>+ 133</td>
<td>+ 2568</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>0</td>
<td>+ 0,102</td>
<td>+ 0,000020</td>
<td>0</td>
</tr>
<tr>
<td>22</td>
<td>0</td>
<td>+ 0,020</td>
<td>+ 0,000220</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>+ 0,102</td>
<td>+ 0,000020</td>
<td>0</td>
</tr>
<tr>
<td>04</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Sowjetische Fachliteratur aus dem Gebiet der Geodäsie und Kartographie

Oberst (ing.) Grobler, OKH, GenStdH, AbtBrKuVermW (III)

Einen interessanten Einblick in die geodätische und kartographische Fachliteratur gibt nachstehendes Verzeichnis, das vom Geodäseverlag mit Stütze des Jahres 1941 im Verlag der GUGK beim SNK der UdSSR, Moskau 1941, erschienen war.

Neben den sowjetischen Verfassern der verschiedenen Werke und besonders technischen Anweisungen und Anleitungen fällt über die Einstellung eines umfangreichen wissenschaftlichen Materials von nicht sowjetischen Verfassern ins Auge. Deutlich tritt hier hervor, daß die Sowjets ohne Hemmungen alles, was auf dem Gebiet der nichtrussischen Fachliteratur erschien, ins Russische übersetzten und nachgedruckten Material zielbewußt gesammelt wurde.

Ganz besonderen Wert legte der Verlag auf die Herausgabe und Verbreitung von Lehrbüchern und Lehrmitteln für die geodätische und kartographische Ausbildung und Fortbildung von Ingenieuren.

Die Abteilung für die Erstellung von Lehrbüchern und Lehrmitteln des Moskauer Forschungsinstituts für Geodäsie, Photogrammetrie und Kartographie (MIIGA u. K) erfüllt die Aufgabe des Verlags, nämlich „die Erstellung von praktischen Lehrbüchern für Geodäsie und Kartographie“.

Der Chef des Kriegskarten- und Vermessungswesens war im Vorwort des Verlags die Arbeit der Verlagsredaktion hervorzuheben.

Der Verlag „Die typischen Formen der Feldbächer und Rechenvordrucke“ herausgegeben von der Abteilung für Geodäsie und Kartographie (GUGK) beim Rat der Volkskommissare (SNK) der UdSSR, Moskau 1940, 408 S. Preis geb. 15 Rbl. (B 15).

Von der Verwaltung der Lehranstalten der GUGK beim SNK der UdSSR bestätigt als Lehrbuch für geodätische Hochschulen. Das Buch gibt eine Übersicht der typischen Formen der Feldbächer und Rechenvordrucke, die für die geodätischen Arbeiten erforderlich sind.

Von der Verwaltung der Lehranstalten der GUGK beim SNK der UdSSR bestätigt als Lehrbuch für die geodätischen Hochschulen. Das Buch gibt eine Übersicht der typischen Formen der Feldbächer und Rechenvordrucke, die für die geodätischen Arbeiten erforderlich sind.
Das Buch ist ein Hilfsmittel für Ingenieure und Techniker, die sich mit der Ausführung der Feldarbeiten und Berechnungen beschäftigen. Außerdem unterstützt es den Leser bei der Bearbeitung der Ergebnisse und der Ausführung von Traversen L. O. bei der Coast and Geodetic Survey USA.

Das Buch gibt eine methodische Ausarbeitung und ein Buch der Schriften für Karten und Meßtischblätter. Es enthält Anleitungen zu allen Angaben und zu besonderen Fragen der Geodäsie und Geologie, die die Struktur der Erdrinde in Beziehung stehen.

Das Buch enthält die Theorie der Ausgleichung, die praktische Anwendung der Ausgleichung im Geodätischen und Kartographischen Teil, die praktische Anwendung der Ausgleichung und die Verfahren der Netzausgleichung und die Anwendung der Wahrscheinlichkeitsrechnung zur Fehlertheorie und die Ausgleichung.

Dank seiner folgerichtigen Darstellung und den zahlreichen Beispielen, welche die theoretischen Ausführungen erläutern, erscheint das Buch als eines der vorzüglichsten Hilfsmittel zum gründlichen Studium der Geodäsie und der auf dieselbe angewendeten Methoden der kleinsten Quadrate.

Vom Chef der Militärtopographischen Verwaltung des Generalstabes der Roten Armee bestätigt als offizielle Anleitung zur Ausführung geodätischer Berechnungen bei den Militärtopographischen Diensten der Roten Armee.

Von der Hauptverwaltung für Geodäsie und Kartographie beim SNR der UdSSR empfohlen als Anleitung zur Ausführung geodätischer Berechnungen bei den aerogeodätischen Unternehmen.

Das Buch enthält: die Theorie der Ausgleichung; die praktische Anwendung der Ausgleichungsrechnung auf die Triangulation; die Verfahren zur Aufstellung von Bedingungsgleichungen; die Verfahren der Netzausgleichung und die Anwendung der Wahrscheinlichkeitsrechnung auf die Fehlertheorie und die Ausgleichung.

Nach dank seiner folgerichtigen Darstellung und den zahlreichen Beispielen, welche die theoretischen Ausführungen erläutern, erscheint das Buch als eines der vorzüglichsten Hilfsmittel zum gründlichen Studium der Geodäsie und der auf dieselbe angewendeten Methoden der kleinsten Quadrate.
Das Buch ist ein Hilfsmittel für Lernende photogrammetrischer Geltungsfächer und für an­gehende Photogrammäter. Es enthält eine genügend ausführliche Beschreibung aller aerophotop­
graphischen Arbeiten, sowie der Vorgänge und Verfahren zur Ausführung der photogramme­
tischen Arbeiten bei der kombinierten Grundrißauf­
nahme durch Luftbildmessung.

X I. J. Prani u. Pranewitsch. Unter­
suchung der Fehler von Tellkreisgroßer Winkel­
enstrumente. Moskau-Leningrad 1934, 148 S.

Das Buch behandelt die Methode der Polar­
koordinaten und die Doppelbildernungsmesser, mit besonderem Vorteil gegenüber anderen Doppel­
tachymeters von Boßhardt-Zois.

X I. B. Suchodrow. Die Zusammenstellung und Gestaltung Lehrwerks dienender geographi­
scher Karten. Moskau 1939, 138 S. Preis in Papiers­
umschlag 4 Rbl.

Das Buch enthält eine Beschreibung der Erzeu­
zungsvorgänge zur Herstellung und Vorbereitung zur Herausgabe Lehrwerks dienender geographi­
scher Karten. Die eingehende Beschreibung der Vorbereitungsarbeiten bezieht sich auf: die Auf­
stehung des Programms, die Vorbereitung des Materials zur Zusammenstellung, die Verdrängung des Netztes der Parallelen und Meridiane usw. Es werden auch einige besondere Verfahren zur Her­
stellung von Lehrkarten angegeben: das Hervor­
garben von Einzelheiten, die Verallgemeinerung der Zeichnung, die gegenseitige Orientierung der Ele­
mente auf der Karte.

Das Buch stellt ein praktisches Hilfsmittel für Redakteure, Brigadiere und Oberkartographen vor, die sich an Lehrplanungen betätigen, die Verfahren zur Prüfung in der Werkstatt und im Labora­

die Herstellung von Lehrkarten einzuführen.

X I. J. Prani u. Pranewitsch, Leitfaden zur Aus­

D. P. Tatjew. Das kartographische Papier und die Arbeits an ihm. Moskau 1941, 100 S. Preis ge­

5 Rbl.

Das Buch belehrt die Werktätigen kartographi­
scher Fabriken und anderer physikalischer Be­

Anleitung zur rechnerischen Be­

X I. J. Prani u. Pranewitsch, Leitfaden zur Aus­

D. P. Tatjew. Das kartographische Papier und die Arbeits an ihm. Moskau 1941, 100 S. Preis ge­

5 Rbl.

Das Buch belehrt die Werktätigen kartographi­
scher Fabriken und anderer physikalischer Be­

Anleitung zur rechnerischen Be­

Arbeiten des Zentralen Wissenschaftlichen Forschungsinstituts für Geodäsie, Aerophoto­
grammetrie und Kartographie (ZNIGA u. K) und anderer Organisationen für wissenschaft­
lische Forschung

X: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).

Z: ZNIGA u. K. Forschungen auf dem Ge­
biet der Geodäsie. Sammelheft Nr. 9, Moskau 1940, 123 S. Preis ge­

4 Rbl. (Gb 56).
Das Sammelheft enthält folgende Abhandlungen:

Über die Schattenlänge der Planeten sind für die geodätischen Arbeiten: Moskau-Leningrad 1936, 187 S. Preis 5 Rbl. (II).

Katalog der im Gebiet des europäischen Teils der UdSSR bestimmten Triangulationspunkte I. Moskau 1954, 257 S. Preis geb. 21 Rbl. (II).

- Jahr 1935: Nr. 10, 11, 12, 13, 14, 15, 16.
- Jahr 1936: Nr. 5, 6, 7, 8, 9, 10, 11, 12.
- Jahr 1940: Nr. 2, 3, 4, 8, 9, 10, 11, 12.

Vorgesehene Ausgaben im Jahre 1941

Allgemein verbindliche Anweisungen

2. Anweisung für die topographische Aufnahme in schwer zugänglichen Gebieten I. Halbjahr.
7. Allgemeine Anweisung für die Transkribierung geographischer Benennungen II. Halbjahr.
8. Anweisung für die topographische Aufnahme im Maßstab 1:200 000. I. Halbjahr.
9. Anweisung für die astronomischen Bestimmungen I., II., III. und IV. O. Verbindlich für alle Behörden und Organisationen der UdSSR, die astronomische Bestimmungen ausführen. II. Halbjahr.
10. Anweisung für die Rechenarbeiten bei Triangulationen aller Ordnungen. Verbindlich für alle Behörden und Organisationen der UdSSR. II. Halbjahr.
11. Lehrbücher für Hochschulen nach dem Plan der WKG Sch.

6. Lehrbücher und Lehrmittel für Technika, Schulen und Kurse

1. A. A. Alexandroff. Stereophotographie. Lehrbuch für topographische Fachschulen und photogeodätische Hochschulen. II. Halbjahr.

Wissenschaftliche und auf den Betrieb bezügliche Monographien

1. J. W. Aristooff und L. W. Bogomo­loff. Flieger-Kartographie. Unter Schriftleitung von Generalmajor der FL W. Sterligoff. Das Buch enthält eine Sammlung in- und ausländischer Erfahrungen bezüglich der Herausgabe von Fliegerkarten und stellt...
die Anforderungen fest, denen die Fliegerkarten genügen sollen ... II. Halbjahr.

Betriebsliteratur
2. J. P. Saružka. Anleitung zur Ausführung kartographischer Arbeiten für Karten im Maßstab 1 : 100.000 und 1 : 200.000. Erläutert die Methoden der geodätischen Arbeiten in aerogeodätischen Unternehmen ... II. Halbjahr.
6. Anleitung für den Bildanschluß, die Vorbereitung von Höhenunterlagen und die Bilddeutung bei der Stereenaufnahme im Maßstab 1 : 100 000. Die Anleitung gibt eine Darstellung der bei den aerogeodätischen Unternehmen der GUGK üblichen Arbeitsmethodik. Empfohlen von der UTGS und der GUGK ... II. Halbjahr.

Tabellen
2. G. G. Jegoroff. Tabellen zur Berechnung von Höhenunterschieden nach optisch gemessenen horizontalen Entfernungen für Höhenwinkel von 0° bis 30° ... I. Halbjahr.
3. G. G. Jegoroff. Tabellen zur Berechnung von Höhenunterschieden nach horizontalen Entfernungen für Höhenwinkel von 0° bis 30° ... II. Halbjahr.
4. Geodätische Tabellen für das neue Ellipsoidal der Sowjetunion ... II. Halbjahr.
8. Dasselbe, für den Bereich des Kartenblattes L-40 ... I. Halbjahr.
9. Dasselbe, für den Bereich des Kartenblattes L-41 ... I. Halbjahr.
10. Dasselbe, für den Bereich des Kartenblattes L-40 ... I. Halbjahr.

Taschenbücher und Kataloge
2. Taschenbuch für die Transskription geographischer Benennungen, in Großbritannien und Irland ... I. Halbjahr.
3. Taschenbuch für topographische und geodätische Arbeiten im Bereich des Kartenblattes N-40 im Maßstab 1 : 100.000 ... I. Halbjahr.
4. Dasselbe, für den Bereich des Kartenblattes L-38 ... I. Halbjahr.
5. Dasselbe, für den Bereich des Kartenblattes P-35 und P-36 ... II. Halbjahr.
6. Dasselbe, für den Bereich des Kartenblattes K-40 ... II. Halbjahr.
7. Dasselbe, für den Bereich des Kartenblattes L-40 ... II. Halbjahr.
8. Dasselbe, für den Bereich des Kartenblattes L-41 ... II. Halbjahr.

Betrachtungen über eine englische Anweisung für das Planschießen in der Überlappungszone zweier Gittersysteme

Von Grf. Dipl.-Ing. Chr. Schöne

Innerhalb der Reichsgebiete werden bekanntlich die Berechnungen für den Grenzmeridianstreifen des deutschen Gauß-Krüger-Systems ostwärts und westlich des Mittelmeridians auf je 2° ausgedehnt, so daß entlang der Nahlinien jeweils 1° breite Überlappungszonen auftreten, für die die Koordinaten in den beiden Streifen berechnet und beide Gitter in den Karten angegeben werden. Mit Rückblick auf die früheren Ausprägungen der Artillerie, bei Operationen, die in die Überlappungszone fallen, immer mit den Koordinatenwerten beider Gitterstreifen, also mit zweierlei Koordinaten und Karten ausgestattet, die ein Planschießen sowohl in dem einen als auch in dem anderen Gitter ermöglichen.

Im Gegensatz dazu behalten die Engländer für die an die Truppe herausgegebenen Koordinaten die festgelegten Abgrenzungen der einzelnen Gitterstreifen bei, so daß die Koordinatenstreifen in den beiden Streifen berechnet und beide Gitter in den Karten angegeben werden. Mit Rückblick auf die früheren Ausprägungen der Artillerie, bei Operationen, die in die Überlappungszone fallen, immer mit den Koordinatenwerten beider Gitterstreifen, also mit zweierlei Koordinaten und Karten ausgestattet, die ein Planschießen sowohl in dem einen als auch in dem anderen Gitter ermöglichen.**

*) Die beiden ägyptischen Gitter sind rechtwinklige Gittersysteme, deren Koordinatenkreise die Gerade abschneiden Längenmeridiane bilden. Die Rechts- und Linksrichtungen sind diejenigen, die die Koordinatenkreise die Gerade abschneiden Längenmeridiane bilden. Die Rechts- und Linksrichtungen sind diejenigen, die die Koordinatenkreise die Gerade abschneiden...

Die Tabelle B zeigt die „Red“-Grid Koordinaten der Eckpunkte eines jeden 5-km-Quadrats des „Purple“-Grid. Die gesamte Tabelle B umfaßt 6 Seiten und enthält für die Rechtswerte 840 km bis 895 km und für die Hochwerte von 200 km bis 215 km des „Purple“-Grid; es entsprechen also den „Purple“-Grid Koordinaten Rechts 860 000, Hoch 391 613, Hoch 886 129.

Im Abschnitt 3 wird davon ausgegangen, daß die Feuerstellungen westlich des 29°-Meridians und in dem liegenden Schießplan, der das „Red“-Grid enthält, in bekannter Weise eingetragen worden sind. Mit Hilfe der vorstehenden Tabelle A, die im „Red“-Grid die Rechtswerte der Schnittpunkte des 29°-Meridianen mit den Ordinatenlinien des Gitters im Abstand von 5 zu 5 km gibt, wird alsdann der Grenzmeridian (29°) in die Schießkarte eingetragen. Der nebenstehend wiedergegebene Ausschnitt aus der Tabelle B zeigt die „Red“-Grid Koordinaten der Eckpunkte eines jeden 5-km-Quadrates des „Purple“-Grid. Die gesamte Tabelle B umfaßt 6 Seiten und enthält für die Rechtswerte 840 km bis 895 km und für die Hochwerte von 200 km bis 215 km des „Purple“-Grid; es entsprechen also den „Purple“-Grid Koordinaten Rechts 860 000, Hoch 391 613, Hoch 886 129.

Tabelle A

<table>
<thead>
<tr>
<th>Northing</th>
<th>E. = Eastings</th>
<th>N. = Northings</th>
</tr>
</thead>
<tbody>
<tr>
<td>680 000</td>
<td>675 000</td>
<td></td>
</tr>
</tbody>
</table>

Ausschnitt aus der Tabelle B

<table>
<thead>
<tr>
<th>Northing</th>
<th>E. = Eastings</th>
<th>N. = Northings</th>
</tr>
</thead>
<tbody>
<tr>
<td>680 000</td>
<td>675 000</td>
<td></td>
</tr>
</tbody>
</table>

Für die Umrechnung der Koordinaten des „Purple“-Grid auf „Red“-Grid-Werte gibt es die Gleichungen:

\[R = 0,9364 \times P + 840 \times 0.7541 \times (-351) \]

(1) \[397 535 + 351 \times 0.9364 = 397 539 \]
(2) \[840 244 + 351 \times 0.7541 = 840 247 \]

Wird die Gleichung (1) durch 9997 dividiert und (2) von (1) subtrahiert, so ergibt sich m = 0.9364. Bei entsprechender Division der Gleichungen (1) und (2) mit 351 und 9997 und anschließender Subtraktion erhält man für n = 0.7541.
Damit ergeben sich die gesuchten „Purple“-Grid-Koordinaten zu
\[
\begin{align*}
R &= 860\,000 + 7541 = 867\,541 \\
H &= 220\,000 + 9364 = 229\,364
\end{align*}
\]
Die Anweisung zeigt, wie die Schwierigkeiten der uneinheitlichen englischen Vermessungsunterlagen in einfacher Weise behoben werden sollen und ist beim Fehlen eines straff organisierten Vermessungswesens im englischen Heer daher auch nur von örtlicher Bedeutung. Die geschilderten Verfahren vervollständigen darüber hinaus noch das bisherige Bild über die primitive Ausbildung der englischen Vermessungstruppen und das geringe Verständnis für die Bedeutung der Heersvermessung überhaupt.